
Postprint, January 2021

Conformance Checking of Partially Matching Processes:
An Entropy-Based Approach

Artem Polyvyanyy , Anna Kalenkova

School of Computing and Information Systems
The University of Melbourne, Parkville, VIC, 3010, Australia

Abstract

Conformance checking is an area of process mining that studies methods for mea-
suring and characterizing commonalities and discrepancies between processes
recorded in event logs of IT-systems and designed processes, either captured
in explicit process models or implicitly induced by information systems. Ap-
plications of conformance checking range from measuring the quality of models
automatically discovered from event logs, via regulatory process compliance, to
automated process enhancement. Recently, process mining researchers initiated
a discussion on the desired properties the conformance measures should possess.
This discussion acknowledges that existing measures often do not satisfy the de-
sired properties. Besides, there is a lack of understanding by the process mining
community of the desired properties for conformance measures that address par-
tially matching processes, i.e., processes that are not identical but differ in some
process steps. In this article, we extend the recently introduced precision and
recall conformance measures between an event log and process model that are
based on the concept of entropy from information theory to account for partially
matching processes. We discuss the properties the presented extended measures
inherit from the original measures as well as properties for partially matching
processes the new measures satisfy. All the presented conformance measures
have been implemented in a publicly available tool. We present qualitative and
quantitative evaluations based on our implementation that show the feasibility
of using the proposed measures in industrial settings.

Keywords: Process mining, conformance checking, partial matching,
properties, entropy

1. Introduction

The research discipline of process mining combines elements of data-centric
disciplines, like data mining and machine learning, with process modeling and

URL: http://polyvyanyy.com/ (Artem Polyvyanyy),

https://cis.unimelb.edu.au/people/anna-kalenkova (Anna Kalenkova)

https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0002-5088-7602
https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0002-5088-7602

analysis to tackle the problems of discovering, monitoring, and improving real-
world processes [1]. To this end, process mining relies on the data on the past
process executions. One of the core problems studied in process mining is con-
formance checking . Conformance checking studies methods, techniques, and
tools that characterize and quantify commonalities and discrepancies between
designed processes, e.g., (business) process models, and records of observed pro-
cesses, e.g., event logs of IT-systems [2, 3, 4, 5, 6]. The core application of
conformance checking is to measure and explain the “goodness” of the designed
processes with respect to those observed in the real-world. The obtained infor-
mation can be used, for example, in the context of automated process enhance-
ment [7, 8], regulatory process compliance [9], and assessment of the quality of
models automatically discovered from event logs [10].

Two main measures in conformance checking are precision and recall.1 Given
an event log and process model, precision quantifies the relation between the
process information shared by the log and model and the process information
encoded in the model, while recall quantifies the relation between the shared
information and the information recorded in the log. Precision and recall are
usually defined to take values between, and including, zero and one. The larger
the precision and recall values, the more commonalities and fewer discrepancies,
as per the applied technique to compute the measurements, exist between the
log traces and the traces described by the model. The precision and recall values
of zero represent a situation of no commonalities between the traces of the log
and model, while the values of one represent the situation of no discrepancies
between the traces.

Precision and recall are well-known performance measures for information
retrieval systems [11]. Given a collection of documents that are relevant to an
information query and a collection of documents retrieved by an information
retrieval system using the same query, precision is the fraction of the number
of relevant retrieved documents over the number of retrieved documents. In
contrast, recall is the fraction of the number of relevant retrieved documents
over the number of relevant documents. Taking the analogy of information re-
trieval, in conformance checking, one can address traces captured in an event
log and model as relevant and retrieved units of information, respectively. In-
deed, automated process discovery techniques [12, 13, 14, 15, 16, 17, 18] aim
to construct a process model that describes traces of interest from an input
event log as closely as possible. Using this interpretation, the precision of the
discovered process model with respect to the input log is the fraction of the
number of distinct traces from the log described in the model over the total
number of distinct traces described by the model, while recall is the fraction
of the number of distinct traces from the log described in the model over the
number of distinct traces recorded in the log. Hence, a process discovery tech-
nique “retrieves” traces by including them in the resulting process model while
aiming to reflect the relevant traces from the input event log.

1Recall is also often referred to as fitness.

2

The proposed above precision and recall measures for conformance check-
ing face at least one major limitation. Unlike in information retrieval, where
both collections of relevant and retrieved documents are finite, the collection of
traces encoded in a (discovered) process model is often infinite. This makes it
difficult to define conformance measures with the desired properties, e.g., de-
terminism and monotonicity, as it is not immediate to define how to measure
infinite collections of traces. In [4], we overcame this challenge by proposing
process conformance measures of precision and recall based on the notion of
topological entropy over regular languages [19]. The entropy-based precision
and recall are deterministic and monotonic measures [4]. However, they are
limited in their ability to compare event logs that contain similar, non-identical
traces, e.g., traces that differ in some process steps. For instance, if every trace
in an event log differs from every trace described by a model in at least one
process step, the precision and recall values computed based on the notion of
topological entropy proposed in [4] both equal to zero, just like in the situation
when the compared traces are entirely different. In this article, we overcome
this limitation. We achieve this by “diluting” the traces captured in the com-
pared event log and process model and then comparing the diluted traces. The
dilution of a trace results in the inclusion of all sub-traces of the trace into the
collection of traces captured in the corresponding event log or process model.
The new measures inherit most of the properties of the original measures and, in
addition, possess intuitively desired properties that address the comparison of
the partially matching traces. For example, the more (in the number of traces)
and the longer (in the number of matched process steps) are the partial matches
between the traces captured in the compared event log and process model, the
larger the precision and recall values are.

This article is an extended version of our conference paper [20]. The original
conference paper made these contributions:

� Extended the entropy-based precision and recall measures grounded in the
exact matching of traces [4] with support of the partial matching between
the traces by comparing their sub-traces;

� Analyzed inheritance of properties of the exact entropy-based measures [4]
by the proposed partial matching measures;

� Demonstrated further properties of the exact matching measures that can
also be applied for partial matching measures;

� Presented results of qualitative and quantitative evaluations of the extended
entropy-based precision and recall measures that demonstrated their useful-
ness and applicability in industrial settings.

This article makes these extensions to the original conference paper:

� Introduces several optimizations of the original partial matching algorithm.
The introduced optimizations aim at achieving lower memory usage by per-
forming event log decompositions;

� Presents an improvement of the algorithms for computing the precision and
recall measures that exploits the sub-trace relationships between the diluted
traces;

3

� Presents and discusses results of an extensive evaluation of computing the
precision and recall using all the devised algorithms on the real-world datasets;

� Extends the discussions of the core contributions, conducted evaluations of
our work, and its usefulness and practical relevance.

The rest of the article is structured as follows. The next section discusses
related work. Section 3 presents a motivating example. Section 4 introduces the
basic notions from process mining and automata theory required to understand
the subsequent discussions. Section 5 presents the entropy-based precision and
recall measures from [4], whereas Section 6 extends them with partial matching
support. Section 7 presents and discusses implementation details of several
versions of our core algorithm for computing the entropy-based precision and
recall measures from Section 6. Section 8 presents the results of our evaluation.
Finally, Section 9 states concluding remarks and discusses future work.

2. Related Work

Over the past decade, a plethora of conformance checking methods have
been developed and proven useful in analyzing real-world process data [3]. These
methods vary in the types of process models and event logs they support and the
types of results they produce. Conformance checking techniques usually either
produce a single number assessing the behavioral similarity of process models
and event logs (quantitative conformance checking) or provide rich diagnostic
information highlighting deviations in the model and log behaviors (qualitative
conformance checking). In this paper, we present and study a quantitative
conformance checking technique.

Some prominent examples of conformance checking techniques include k-
order Markovian abstractions [21], Projected conformance checking [22], Anti-
alignments [23], Escaping edges [24], Set difference [25], Negative events [26],
and Entropy-based techniques [4, 20, 27]. Recently, quantitative stochastic con-
formance checking approaches that account for model and log trace probabili-
ties have been proposed [5, 28, 29]. Although these approaches produce a single
number, they can often be supported by visual analytics to provide qualitative
conformance information. For instance, the Projected conformance checking
and the Escaping edges techniques represent analyzed behaviors in the form of
finite automata models that are compared based on their commonalities and
deviations. Similarly, the Entropy-based techniques, which are also based on
automata theory, can be complemented by qualitative techniques that visualize
commonalities and discrepancies in the automata models. We consider this as
a direction for future work. Existing methods that combine quantitative and
qualitative conformance checking techniques visualize conformance analytics on
process models and are usually based on the concept of alignment, a token replay
technique, or footprint matrices, refer to [30], [31], and [1] for details.

In [6], the authors study properties that the state-of-the-art quantitative
conformance techniques fulfill. The entropy-based exact matching precision and

4

recall measures [4] are shown to possess all the studied properties. Besides, as
shown in [4], the entropy-based exact matching precision measure fulfills all the
axioms proposed in [32]. However, as shown in the next section, analysis founded
on the exact matching of model and log trace can often be seen as restrictive. In
this article, we present entropy-based precision and recall measures that account
for the partial matching of the compared traces and study them from theoretical
and practical perspectives. We show that the partial entropy-based precision
fulfills generalized versions of the properties from [32]. Additionally, we prove
that the exact matching approach fulfills the strict monotonicity version of the
precision axiom from [32]. Finally, we elaborate on the monotonicity properties
of the proposed partial matching measures distinguishing the cases when they
inherit the strict monotonicity properties from the exact matching approach. We
support the explanations of the inherited and the new properties with examples.

3. Motivating Example

Consider a simple process of booking a flight ticket captured as a finite
automaton shown in Fig. 1a; ignore the dashed arrow in the figure. The process
starts when the user opens a booking application. Then, she fills in her name
and passport details (in any order). Finally, the booking is confirmed, and the
user closes the application. Suppose that the user behavior in the real-world can
deviate from the one specified in the reference model. For example, a user can fill
in the name twice and close the booking application without confirmation. This
sequence of steps is captured in the automaton shown in Fig. 1b; again, ignore
the dashed arrow. Even though the two automata presented in Fig. 1 describe
similar traces, precision and recall measures that rely on exact comparisons of
traces cannot appraise this similarity (i.e., the corresponding values of precision
and recall equal to zero).

A

open
application

B

fill
name

C fill passport
details

E
confirm

F G

close
application

D
fill passport
details

fill
name

Ʈ

(a)

1

open
application

2

fill
name

3

fill
name

4

fill passport
details

5 6

close
application

Ʈ

(b)

Figure 1: Two finite automata before (solid arrows only) and after (with dashed arrows)
inserting silent steps.

To address this limitation, one can augment the automata by “mirror-
ing” certain observable steps, i.e., steps that represent meaningful activities,

5

with silent (τ) steps. As a result, the augmented automata should describe
fresh traces that capture the sub-sequences of observable steps shared by the
similar traces encoded in the original automata. For instance, if one mir-
rors step confirm in the automaton in Fig. 1a and one step fill name (any
of the two) in the automaton in Fig. 1b with silent steps, cf. the dashed ar-
rows in Fig. 1, then both resulting automata describe the observable trace
⟨open application, fill name, fill passport details, close application⟩; an observable
trace is obtained from a trace by removing all its silent steps without changing
the order of the remaining steps. The fresh trace in the augmented automata
explicitly encodes the commonalities, while the original traces that induced
the fresh trace encode the discrepancies between the processes captured in the
automata. This idea of identifying partially matching traces through their “di-
lution” with silent steps lies at the heart of the solution proposed in the work at
hand. Finally, note that after the insertion of the silent step in the automaton
in Fig. 1a, the resulting automaton describes two fresh traces. In the subse-
quent sections, we will explain how we exploit this phenomenon for the benefit
of identifying all the commonalities between the traces of two given automata.

According to the conformance measures proposed in this article, precision
and recall values between the original automata (without dashed arrows) in
Fig. 1 are 0.859 and 0.964, respectively. If one inserts step confirm between
fill passport details and close application in the automaton in Fig. 1b, i.e., makes
the traces it describes more similar to the traces captured by the automaton in
Fig. 1a, the values of precision and recall increase to 0.978 and 0.973, respec-
tively, reflecting the monotonic properties of our measures.

4. Preliminaries

This section introduces notions and notations necessary to support the sub-
sequent discussions.

4.1. Sequences, Languages, and Event Logs

Let X be a set of elements. The powerset over set X, denoted by P(X), is
the set of all subsets of X including the empty set and X.

By ⟨x1, x2, . . . , xk⟩, where x1, x2, . . . , xk ∈ X, k ∈ N0, we denote a sequence
of elements over X of length k. The empty sequence of zero length is denoted
by ⟨⟩. Given two sequences x = ⟨x1, x2, . . . , xk⟩ and y = ⟨y1, y2, . . . , ym⟩, by
x ⋅ y we denote the concatenation of x and y, i.e., the sequence obtained by
appending y to the end of x; it holds that x ⋅ y = ⟨x1, x2, . . . , xk, y1, y2, . . . , ym⟩.
Let us define the notion of sub-sequence (sub-word) recursively: (1) if sequence
x is empty, then the empty sequence is a sub-sequence of x, (2) if x = ⟨x1⟩ ⋅ α,
then ⟨x1⟩ ⋅ α̂ and α̂, where α̂ is a sub-sequence of α, are sub-sequences of x. As
follows from this definition, a sub-sequence can be obtained from a sequence by
skipping some of the elements’ occurrences. Let us consider sequence ⟨a, a, b⟩,
the set of all its sub-sequences is {⟨⟩ , ⟨a⟩ , ⟨b⟩ , ⟨a, a⟩ , ⟨a, b⟩ , ⟨a, a, b⟩}. X∗ stands
for the set of all finite sequences over X including the empty sequence. Given

6

a sequence x and a set K, by x∣K , we denote a sequence obtained from x by
removing all elements of x that are not members of K without changing the
order of the remaining elements, e.g., it holds that ⟨1,3,2,1,4,3⟩∣{4,1} = ⟨1,1,4⟩.

An alphabet is a nonempty finite set. The elements of an alphabet are its
labels. A (formal) language L over an alphabet Σ is a (not necessarily finite)
set of sequences, or words, over Σ, i.e., L ⊆ Σ∗. By Cn(L), n ∈ N, we denote the
set of all words in L of length n. By Ξ, we denote a universe of all observable
labels. By τ , we denote a special silent label, such that τ ∉ Ξ. Let L1 and L2

be two languages. Then, L1 ○ L2 is their concatenation defined by {l1 ⋅ l2 ∣ l1 ∈

L1 ∧ l2 ∈ L2}.
Let E be a finite nonempty set of events. A finite language L ⊆ E∗ is an

event log, and its words are called traces. A sub-word of a trace is called its
sub-trace. In process mining, traces are used to encode executions of business
processes, with events representing occurrences of activities. The ordering of
events in a trace then encodes the temporal order relation, i.e., for two events
at two different positions in a trace, the one at the smaller position has occurred
before the other event.

4.2. Finite Automata

We deal with a common notion of a finite automaton [33]. A nondetermin-
istic finite automaton (NFA) is a 5-tuple (Q,Λ, δ, q0,A), where Q is a finite
nonempty set of states, Λ ⊆ Ξ is a set of labels, such that Q and Ξ are disjoint,
δ ∶ Q × (Λ ∪ {τ}) → P(Q) is the transition function, where τ /∈ Q ∪ Λ, q0 ∈ Q is
the start state, and A ⊆ Q is the set of accept states.

An NFA induces a collection of computations. A computation of an NFA
(Q,Λ, δ, q0,A) is either the empty word or a word σ = ⟨a1, a2, . . . , an⟩, n ∈ N,
where every ai is a member of Λ ∪ {τ}, i ∈ [1 .. n], and there exists a sequence
of states ⟨q0, q1, . . . , qn⟩, where every qj is a member of the set of states Q,
j ∈ [1 .. n], such that for every k ∈ [1 .. n] it holds that qk ∈ δ(qk−1, ak).

We say that σ leads to qn. By convention, the empty sequence always leads
to the start state. An NFA accepts a word σ iff σ is a computation of this
NFA that leads to one of its accept states. The language of an NFA B =

(Q,Λ, δ, q0,A) is denoted by lang(B) and is the set {σ ∈ Λ∗ ∣∃ρ ∈ (Λ ∪ {τ})∗ ∶
((B accepts ρ) ∧ (σ = ρ∣Λ))}, i.e., the set of all words B accepts with all the
silent labels removed. We also say that B recognizes lang(B).

A deterministic finite automaton (DFA) is an NFA (Q,Λ, δ, q0,A) such that
for every state q ∈ Q it holds that δ(q, τ) = ∅ and for every state q ∈ Q and for
every label a ∈ Λ it holds that ∣δ(q, a)∣ ≤ 1.

A DFA (Q,Λ, δ, q0,A) is ergodic if its underlying graph is strongly irre-
ducible, i.e., for all (q, p) ∈ Q ×Q there is a sequence of states ⟨q1, . . . , qn⟩ ∈ Q

∗,
n ∈ N, such that q1 = q, qn = p, and for every k ∈ [1 .. n − 1] there exists λ ∈ Λ
such that qk+1 ∈ δ(qk, λ).

A language L ⊆ Σ∗ is regular iff there exists an NFA that recognizes L. L is
irreducible if, given two words w1 and w2 in L, there exists a word w ∈ Σ∗, such
that w1 ⋅w ⋅w2 ∈ L. A regular language L is irreducible iff it is a language of an
ergodic DFA [19].

7

5. Entropy-Based Conformance Checking: Exact Matching

In this article, we consider process models that describe collections of traces
that can be recognized by DFAs. These can be Petri nets or BPMN models that
induce finite reachability graphs, or NFAs, which can always be converted into
equivalent DFAs [33]. Note that state-of-the-art process discovery algorithms
often construct process models that induce finite reachability graphs [34, 18].
As a log induces a finite language, it can, as well, be encoded as a DFA. To
compute precision and recall between a given process model and event log,
we compare the languages the corresponding DFAs recognize. Specifically, we
compute precision (recall) as the ratio of the entropy that estimates the number
of distinct traces the model and log share to the entropy that estimates the
number of distinct traces captured in the model (log).

Next, in Section 5.1, we present the notion of topological entropy [19]. Then,
in Section 5.2, we use topological entropy to define a notion of the short-circuit
entropy of a regular language. Finally, in Section 5.3, we present the entropy-
based precision and recall between a process model and an event log.

5.1. Topological Entropy

The cardinality of a finite language L ⊆ Σ∗ is defined as the number of words
in L, i.e., ∣L∣. This definition can be used, for example, to decide which language
contains more words. However, it is not particularly useful when it comes to
comparing infinite languages. Indeed, it is arguable whether a whole and its
part should be considered to be the same. Assuming they should not, in certain
cases, for irreducible languages, one can use the notion of topological entropy to
make the distinction. Given an irreducible language L, its topological entropy
is defined as follows [19]:

ent(L) = lim sup
n→∞

log ∣Cn(L)∣

n
.

Therefore, topological entropy of L estimates cardinality of L by measuring the
ratio of the number of distinct words in the language to the length of these
words, as the length of words approaches infinity. One can compute topological
entropy of an irreducible regular language L as the logarithm of the Perron-
Frobenius eigenvalue of the adjacency matrix of a DFA that recognizes L [19].

5.2. Short-Circuit Entropy

As topological entropy is defined over irreducible languages, it is not applica-
ble for infinite non-irreducible languages or finite languages, e.g., event logs. To
allow estimating cardinality of an arbitrary regular language, in [4], we proposed
the notion of a short-circuit measure over languages.

Given a measure over languages m ∶ L → R+

0 , where L ⊆ P(Σ∗) and Σ ⊂ Ξ,
its short-circuit version m● is defined as m●(L) = m((L ○ {⟨χ⟩})∗ ○ L), where
L ⊆ Σ∗ and χ ∈ Ξ ∖Σ. For a given language L, it holds that (L ○ {⟨χ⟩})∗ ○ L is
irreducible [4]. Hence, if L is a family of all regular languages, then ent●(L), L ∈

8

I
a

II
b

III

IVc

d
V

d

e
VI

(a)

χ

I
a

II
b

III

IVc

d
V

d

e
VI

(b)

Figure 2: Two finite automata; (b) is ergodic.

L, is well-defined and can be computed. To compute short-circuit (topological)
entropy of a regular language L, i.e., ent●(L), one can transform a DFA that
recognizes L by inserting additional transitions – marked by a special label χ not
occurring in the words of L – that connect all the accept states of the DFA with
its start state and then compute topological entropy of the language recognized
by the resulting ergodic automaton; refer to [4] for details.

We assume that every state of the DFA used in the above-presented com-
putation procedure is on a directed path from the start state to some accept
state. Note that given a DFA that does not satisfy this requirement, one can
remove all the states (and transitions incident with these states) that are not
on a directed path from the start to some accept state, to obtain a DFA that
satisfies the requirement and recognizes the language of the original DFA.

For example, ent●(L), where L is the language recognized by the DFA in
Fig. 2a, can be computed as topological entropy of the language recognized by
the ergodic DFA in Fig. 2b.

It holds that ent●(∅) = 0. Moreover, for two regular languages L1 and L2,
such that L1 ⊂ L2, it holds that ent●(L1) < ent●(L2), i.e., ent● is monotonic
on the partially ordered set of regular languages induces by the subset relation;
again, refer to [4] for details.

Next, we show two additional properties of the short-circuit entropy measure
over regular languages. In Section 5.3, we use these properties to establish
several new properties of the entropy-based precision and recall measures.

First, if for every length it holds that one regular language has no more words
of that length than the other regular language, then the short-circuit entropy
of the former language is less than or equal to the short-circuit entropy of the
latter language.

Theorem 5.1 (Monotonicity on the number of words).
Let L1 and L2 be two regular languages such that ∀k ∈ N ∶ ∣Ck(L1)∣ ≤ ∣Ck(L2)∣.
Then, it holds that ent●(L1) ≤ ent●(L2). ⌟

Proof. Let xn=
log ∣Cn(L1)∣

n
and yn=

log ∣Cn(L2)∣

n
, n≥1. Suppose that {xnl}

∞

l=1, where
n1 < n2 < . . . , is a subsequence of {xn}

∞

n=1, such that liml→∞ xnl = ent●(L1).
Consider the corresponding sequence {ynl}

∞

l=1. As follows from the theorem
conditions, ∀l ∈ N, l ≥ 1 ∶ xnl ≤ ynl , then liml→∞ supxnl ≤ liml→∞ sup ynl . Hence,
ent●(L1) = liml→∞ xnl = liml→∞ supxnl ≤ liml→∞ sup ynl ≤ ent●(L2). ◾

Second, in certain cases we can refine the above property as follows.

9

Theorem 5.2 (Strict monotonicity on the number of words).
Let L1 and L2 be two regular languages such that ∀k ∈ N ∶ ∣Ck(L1)∣ ≤ ∣Ck(L2)∣

and ∃k0 ∈ N ∶ ∣Ck0(L1)∣ < ∣Ck0(L2)∣. Then, it holds that ent●(L1) < ent●(L2). ⌟

Proof. Language L1 does not contain the maximum number of sequences of
length k0, because ∣Ck0(L1)∣ < ∣Ck0(L2)∣. Let l be a sequence such that l ∈ Σ∗,
∣l∣ = k0 and l ∉ L1. Let us consider language L1 = L1 ∪ {l}. Then, ent●(L1) <

ent●(L1), because of the monotonicity of the short-circuit entropy measure,
see [4]. According to Theorem 5.1, ent●(L1) ≤ ent●(L2). Thus, ent●(L1) <

ent●(L2). ◾

By counting and comparing the number of words of a certain length, we operate
over a different partial order than in [4]. This partial order illustrates a more
general phenomenon. Note that if L1 ⊆ L2, then ∀k ∈ N ∶ ∣Ck(L1)∣ ≤ ∣Ck(L2)∣.
If, additionally, L1 ⊂ L2, then ∃k0 ∶ ∣Ck0(L1)∣ < ∣Ck0(L2)∣. Theorem 5.1
and Theorem 5.2 prove monotonicity of ent● on this new partial order and
allow comparing regular languages that are not in the set containment rela-
tionship. According to Theorem 5.2, for example, for two regular languages
L1 = {⟨a, a⟩, ⟨a, a, a⟩, ⟨a, a, a, a⟩, ...} and L2 = {⟨b⟩, ⟨b, b⟩, ⟨b, b, b⟩, ⟨b, b, b, b⟩, ...}, it
holds that ent●(L1) < ent●(L2).

5.3. Precision and Recall

Let M and L be two regular languages that capture the traces of a model
and log, respectively. The intersection of M and L is a regular language, refer
to [33]. Therefore, one can use ent●(M ∩ L) to estimate cardinality of the
collection of all the traces shared by the model and log. Consequently, in [4],
the authors define the entropy-based precision (prec) and recall (recall) between
M and L as follows:

prec(M,L) =
ent●(M ∩L)

ent●(M)
, recall(M,L) =

ent●(M ∩L)

ent●(L)
.

In [4], we showed that as the number of traces shared by the model and log
increases, the entropy-based precision and recall also increase. Next, we demon-
strate three additional properties of the entropy-based precision and recall,
which also hold for their extensions presented in Section 6.

Theorem 5.3 (Monotonicity).
Let L1 and L2 be two event logs such that L1 ⊆ L2 and let M be a regular
language. Then, it holds that prec(M,L1) ≤ prec(M,L2). Let M1 and M2 be
two regular languages such that M1 ⊆ M2 and let L be an event log. Then, it
holds that recall(M1, L) ≤ recall(M2, L). ⌟

Proof. Since it holds that L1 ⊆ L2 (M1 ⊆M2), it also holds that M ∩L1 ⊆M ∩L2

(M1 ∩L ⊆M2 ∩L). Because of the monotonicity of the short-circuit entropy [4],
it holds that ent●(M∩L1) ≤ ent●(M∩L2) (ent●(M1∩L) ≤ ent●(M2∩L)). Hence,
it also holds that prec(M,L1) ≤ prec(M,L2) (recall(M1, L) ≤ recall(M2, L)). ◾

10

Theorem 5.3 shows that the “monotonicity of languages” implies the monotonic-
ity of the corresponding precision and recall values. This result can be exploited
to prove the properties and axioms proposed in [6] and [32]. Additionally, this
theorem generalizes Axiom A5 proposed in [32], which states that L1 ⊆ L2 ⊆M
is a sufficient condition for the outlined inequality of precision values. Moreover,
if one claims that L1 ⊂ L2 ⊂M , then (L1 ∩M) ⊂ (L2 ∩M), and thus, according
to [4], the strict inequality holds, i.e., prec(M,L1) < prec(M,L2). Similarly,
Theorem 5.3 shows the monotonicity of recall values.

Desired properties and axioms for the precision and recall measures discussed
in [6, 32] rely on the partial order of languages induced by the subset relation.
However, it might be feasible to extend the partial order and consider a more
general case when one language is not necessarily a subset of another. To that
end, we extend the partial order by considering the number of words of a specific
length. The following two theorems give a more general view on the properties
of precision and recall measures.

Theorem 5.4 (Generalized monotonicity).
Let L1 and L2 be two event logs and let M be a regular language such that ∀k ∈
N ∶ ∣Ck(M ∩L1)∣ ≤ ∣Ck(M ∩L2)∣. Then, it holds that prec(M,L1) ≤ prec(M,L2).
Let M1 and M2 be two regular languages and let L be an event log such that
∀k ∈ N ∶ ∣Ck(M1 ∩ L)∣ ≤ ∣Ck(M2 ∩ L)∣. Then, it holds that recall(M1, L) ≤

recall(M2, L). ⌟

Theorem 5.4 follows from Theorem 5.1 applied to M ∩L1 and M ∩L2 (M1 ∩L
and M2 ∩L). This result can be conveniently refined into the next one.

Theorem 5.5 (Generalized strict monotonicity).
Let L1 and L2 be two event logs and let M be a regular language such that
∀k ∈ N ∶ ∣Ck(M∩L1)∣ ≤ ∣Ck(M∩L2)∣ and ∃k0 ∈ N ∶ ∣Ck0(M∩L1)∣ < ∣Ck0(M∩L2)∣.
Then, it holds that prec(M,L1) < prec(M,L2). Let M1 and M2 be two regular
languages and let L be an event log such that ∀k ∈ N ∶ ∣Ck(M1∩L)∣ ≤ ∣Ck(M2∩L)∣
and ∃k0 ∈ N ∶ ∣Ck0(M1 ∩L)∣ < ∣Ck0(M2 ∩L)∣. Then, it holds that recall(M1, L) <
recall(M2, L). ⌟

Theorem 5.5 follows immediately from the application of Theorem 5.2 to lan-
guages M ∩L1 and M ∩L2 (M1 ∩L and M2 ∩L).

Consider DFAs in Fig. 3a and Fig. 3b that recognize languages M1 and M2,
respectively, and event logs L1 = {⟨a, b⟩ , ⟨b, a⟩}, L2 = {⟨⟩ , ⟨a, b⟩ , ⟨b, a⟩ , ⟨a, c⟩ ,
⟨b, a, b⟩}, and L3 = {⟨b, a, d⟩ , ⟨b, a, b⟩}.

1

a
2

b,c

4

2

3
b a

M1

(a)

1

a
2

b,c

4

2

3
b a

d

M2

(b)

Figure 3: Two finite automata.

11

The entropy-based precision and recall values for all the combinations of these
two regular languages and three event logs are listed in Table 1.

Table 1: The entropy-based precision and recall values.

Model Log prec recall

M1 L1 0.874 1.000
M1 L2 1.000 0.745
M1 L3 0.000 0.000
M2 L1 0.754 1.000
M2 L2 0.863 0.745
M2 L3 0.000 0.000

The values in Table 1 justify, e.g., that M1 contains all the traces from L1,
as it holds that recall(M1, L1) = 1, and does not contain some traces from L2,
as recall(M1, L2) < 1. One can also conclude that L2 “covers” all the behav-
ior of M1, prec(M1, L2) = 1. Furthermore, M2 does not contain some traces
from L2, recall(M2, L2) < 1. According to Theorem 5.3, since L1 ⊂ L2 (M1 ⊂

M2), it holds that prec(M1, L1) ≤ prec(M1, L2), prec(M2, L1) ≤ prec(M2, L2)

(recall(M1, L1) ≤ recall(M2, L1), recall(M1, L2) ≤ recall(M2, L2)). Moreover,
Theorem 5.5 allows us obtaining strict inequalities prec(M1, L1) < prec(M1, L2)

and prec(M2, L1) < prec(M2, L2).
Note that L3 does not intersect with M1 (or M2). Consequently, despite

some shared subsequences in their traces, e.g., ⟨b, a⟩, the corresponding precision
and recall values equal to zero. This limitation is addressed in the next section.

6. Entropy-Based Conformance Checking: Partial Matching

In this section, we extend the conformance checking approach summarized
in the previous section with support for partial matching of the compared model
and log. We first define additional notions and discuss their properties, e.g., τ -
closure of an automaton that implements the idea of diluting model or log
traces, refer to Section 6.1. We then use these notions to propose new precision
and recall measures, refer to Section 6.2. Finally, Section 6.3 discusses aspects
related to the construction of a DFA that recognizes a given (diluted) event log.

6.1. Entropy and τ -Closure of Regular Languages

Let B = (Q,Λ, δ, q0,A) be an NFA that recognizes language L, i.e., lang(B) =

L. The τ -closure of B, denoted by B′, is the NFA B′ = (Q,Λ, γ, q0,A), where
q2 ∈ γ(q1, a) iff (q2 ∈ δ(q1, a)) ∨ ((a = τ) ∧ (∃ b ∶ q2 ∈ δ(q1, b))), q1, q2 ∈ Q,
a, b ∈ Λ ∪ {τ}. In other words, for each two states connected via a transition
in B, its τ -closure contains an additional silent transition that connects these
states. We call B′ and lang(B′) the τ -closure of B and L, respectively. For
example, Fig. 4 shows the τ -closure of the automaton from Fig. 2a.

If L is the language recognized by B, by L′, we denote the language recog-
nized by B′; note that L ⊆ L′ and L′ is regular. Next, we state two important
properties of τ -closures of regular languages.

12

I
a

II
b

III

IVc

d
V

d

e
VI

τ τ τ τ

τ
τ

Figure 4: τ -closure of the DFA from Fig. 2a.

Theorem 6.1 (Monotonicity of τ -closure).
Let L1, L2 be regular languages and L1 ⊂ L2. Then, it holds that L′1 ⊆ L

′

2. ⌟

Proof. For each α ∈ L1, it holds that α ∈ L2. Consequently, all the sequences
obtained from α by the τ -closure operation belong to both L′1 and L′2. This
implies L′1 ⊆ L

′

2. ◾

Next, we give a condition that ensures strict monotonicity.

Theorem 6.2 (Strict monotonicity of τ -closure).
Let L1 and L2 be two regular languages such that L1 ⊂ L2 and L2 �⊆ L

′

1. Then,
it holds that L′1 ⊂ L

′

2. ⌟

Proof. It follows from Theorem 6.1 that L′1 ⊆ L
′

2. Since L2 �⊆ L
′

1, there exists a
sequence α, such that α ∈ L2 and α ∉ L′1. Hence α ∈ L′2 (because L2 ⊆ L

′

2), and
consequently L′1 ≠ L′2. Since it holds that L′1 ⊆ L′2 and L′1 ≠ L′2, it is a strong
inclusion L′1 ⊂ L

′

2. ◾

Theorem 6.2 gives a sufficient condition for the strong inclusion of τ -closures of
languages L1 and L2, where L1 ⊂ L2. Concretely, it suffices to find a sequence
in L2 such that it cannot be obtained by “diluting” L1, i.e., L2 �⊆ L

′

1.

6.2. Precision and Recall

Let M and L be two languages recognized by NFAs that encode the traces
of a model and log, respectively. We propose to measure precision and recall
between the model and log based on the τ -closures of M and L as follows:

precτ(M,L) =
ent●(M ′ ∩L′)

ent●(M ′)
, recallτ(M,L) =

ent●(M ′ ∩L′)

ent●(L′)
,

where M ′ and L′ are the τ -closures of M and L, respectively. Note that first
M ′, L′, and M ′∩L′ are constructed, and only after that short-circuit entropy is
computed. The relations between M and L and their τ -closures are visualized
in Fig. 5. The intersection of M ′ and L′ contains the intersection of M and
L and, in addition, all the common sub-traces of M and L. It is possible that
M ∩L is empty, while M ′∩L′ is not. This holds, for example, if M and L are the
languages recognized by the automata in Fig. 1a and Fig. 1b, respectively. This
is also the reason the corresponding precision and recall values take non-zero
values, refer to Section 3 for details.

13

Lˈ Mˈ

Mˈ∩Lˈ

M L
M∩L

Figure 5: Intersection of two languages and their τ -closures.

Theorem 6.1 and Theorem 6.2 prove monotonicity of τ -closure operation
and allow applying Theorem 5.3 to τ -closures of original languages, and hence,
inheriting monotonicity properties of the exact matching precision and recall
measures. As shown in Theorem 6.2, for strict monotonicity, additional condi-
tions are to be met.

In contrast to the monotonicity based on the partial order of languages in-
duced by the subset relation (Theorem 6.1 and Theorem 6.2), the monotonicity
based on the partial order that relates languages on the number of words of a spe-
cific length is not inherited by τ -closures of languages. Consider two languages:
L1 = {⟨a, a⟩, ⟨a⟩} and L2 = {⟨a, b⟩}. According to Theorem 5.2, ent●(L1) >

ent●(L2), because ∣C2(L1)∣ = ∣C2(L2)∣ and ∣C1(L1)∣ > ∣C1(L2)∣. The τ -closures
of these languages are L′1 = {⟨a, a⟩, ⟨a⟩, ⟨⟩} and L′2 = {⟨a, b⟩, ⟨a⟩, ⟨b⟩, ⟨⟩}, respec-
tively. According to Theorem 5.2, since ∣C2(L

′

1)∣ = ∣C2(L
′

2)∣, ∣C1(L
′

2)∣ > ∣C1(L
′

1)∣,
and ∣C0(L

′

1)∣ = ∣C0(L
′

2)∣, it holds that ent●(L′1) < ent●(L′2). Although the gen-
eralized monotonicity for precision and recall measures (Theorem 5.4, Theo-
rem 5.5) cannot be extrapolated to the partial matching approach, Theorem 5.4
and Theorem 5.5 can still be applied separately for original languages and their
τ -closures.

Table 2 extends Table 1 by showing the new precision and recall values for
the corresponding models and logs.

Table 2: The entropy-based precision and recall values, both original and based on the τ -
closures of languages.

Model Log prec recall precτ recallτ

M1 L1 0.874 1.000 0.873 1.000
M1 L2 1.000 0.745 1.000 0.960
M1 L3 0.000 0.000 0.873 0.811
M2 L1 0.754 1.000 0.615 1.000
M2 L2 0.863 0.745 0.704 0.960
M2 L3 0.000 0.000 0.733 0.966

These example values show that although log L3 has no common traces with
the models, they can be partially matched. According to Theorem 6.2, it holds
that L′1 ⊂ L

′

2, and according to Theorem 5.3 (applied to L′1, L′2, M ′

1, and M ′

2),
new precision values for L1 (0.873 and 0.615) are indeed less than or equal to
the corresponding new precision values for L2 (1.000 and 0.704). Interestingly,
precτ(M1, L2) = 1 because M ′

1 ⊆ L′2. Also, note that the absolute values of
the reported measures are of minor importance, as those are their relations

14

that provide useful insights. According to Theorem 6.2, L′1 ⊂ L
′

3, similarly, the
new precision values for L3 (0.873 and 0.733) are greater than or equal to the
corresponding new precision values for L1 (0.873 and 0.615).

It is easy to verify that M ′

1 ⊂M
′

2, refer to Fig. 3. Then, according to Theo-
rem 5.3, recall values for M2 are always greater than or equal to the correspond-
ing recall values for M1.

Let us take a closer look at logs L2 and L3. None of these logs includes the
other; same holds for logs L′2 and L′3. It holds that M ′

2 ∩ L
′

2 = {⟨⟩ , ⟨a⟩ , ⟨b⟩ ,
⟨c⟩ , ⟨a, b⟩ , ⟨b, a⟩ , ⟨a, c⟩} and M ′

2∩L
′

3 = {⟨⟩ , ⟨a⟩ , ⟨b⟩ , ⟨d⟩ , ⟨a, b⟩ , ⟨b, a⟩ , ⟨a, d⟩ ,
⟨b, d⟩ , ⟨b, a, d⟩}. The former language contains less number of sequences of the
length two and three. Hence, by Theorem 5.5 applied to L′2, L′3, and M ′

2, it
must hold that precτ(M2, L2) < precτ(M2, L3). Indeed, according to the values
in Table 2: precτ(M2, L2) = 0.704 and precτ(M2, L3) = 0.733. Note that this
property allows comparing languages over different alphabets.

6.3. Automata That Recognize τ -Closures of Event Logs

In most practical cases, a process model designed or discovered from an event
log generalizes the behavior captured in the log. Consequently, its reachabil-
ity graph often has a compact structure. A real-world event log, however, is
usually large, and its representation involves a large number of states and tran-
sitions. Furthermore, the construction of a DFA that recognizes the τ -closure
of a given event log can lead to the state space explosion [35]. To this end, we
introduce two heuristics that aim at reducing the number of states generated
when constructing a DFA that encodes the τ -closure of an event log.

Firstly, we take advantage of the composite nature of an event log and ap-
ply the divide-and-conquer approach. Indeed, an event log can be split into
disjoint subsets of traces. Then, intermediate minimal DFAs that recognize
the languages of the subsets can be constructed and then merged to obtain a
DFA that recognizes the original event log. Although this does not solve the
problem of state space explosion when determinizing a diluted event log, in
practice, this strategy often allows reducing the number of constructed inter-
mediate states. Consider the DFA constructed for the τ -closure of event log
L = {⟨a, b, a⟩, ⟨b, a, a, b⟩,⟨c, b, c⟩} shown in Fig. 6. This DFA contains groups of
equivalent states, for example {D,F,J} and {E, I}, that will be merged during
the subsequent minimization. To reduce the number of states stored in memory,
it may be feasible to construct models from subsets of traces, minimize them
independently, and then merge. For instance, one can first construct a DFA rec-
ognizing the τ -closure of traces ⟨a, b, a⟩ and ⟨b, a, a, b⟩ (the corresponding states
have a white background in Fig. 6), then minimize it by merging {D,F} and
{E, I} groups of states, and finally add states and transitions modeling the
τ -closure of trace ⟨c, b, c⟩ (these states are highlighted in gray in the figure).

In Section 8, we experiment with and discuss different strategies of splitting
a given event log into subsets of traces to construct a DFA that recognizes the
diluted version of this event log.

Secondly, when constructing an NFA that recognizes the diluted version of
an event log, one can ignore those traces that do not impact the final result.

15

1
b

5

2

9

a

c

3 4
b a

6 7
a a

7
b

10 11
b c

A

B

a

C

b

E

a

D

a

F

b

G

b

H

a

I

a

b

b

J

c

b

K

c

L

b
c

Figure 6: A DFA that recognizes the τ -closure of L = {⟨a, b, a⟩, ⟨b, a, a, b⟩, ⟨c, b, c⟩}.

For example, one can ignore a trace that is a sub-trace of some other trace in
the log, as captured in the following result.

Proposition 6.3 (Sub-trace reduction).
Let L be an event log and let α,β ∈ L be two traces such that β can be obtained
from α by removing some events without changing the order of the remaining
events, i.e., β is a sub-trace of α. Then, it holds that L′ = (L ∖ {β})′. ⌟

Proof. By the definition of L′, it holds that L′ = (L ∖ {β})′ ∪ {β}′. As it holds
that α ∈ L ∖ {β}, it also holds that all the sub-traces of α are in (L ∖ {β})′. As
β is a sub-trace of α, it holds that β ∈ (L ∖ {β})′. As every sub-trace β̂ of β
is also a sub-trace of α, it also holds that β̂ ∈ (L ∖ {β})′. Hence, it holds that
{β}′ ⊆ (L ∖ {β})′. Consequently, it holds that L′ = (L ∖ {β})′. ◾

Proposition 6.3 suggests that when constructing an NFA that recognizes the
diluted version of a given event log, refer to Section 6.1, one is “safe” to only
use the traces that are not sub-traces of some other traces in the log and can
ignore all the other traces. In practice, this often leads to a significant reduction
of the input, and consequently, of the computation time and memory used to
construct a DFA that recognizes the diluted version of the log. Again, we
experiment with and discuss this phenomenon in Section 8.

7. Algorithms

In this section, we describe algorithms that implement conformance check-
ing measures proposed in this article. All the presented in this section algo-
rithms have been implemented in a publicly available tool with a command-line
interface distributed as part of the jBPT library [36, 37].2

2Refer to https://github.com/jbpt/codebase (jbpt-pm module).

16

https://github.com/jbpt/codebase

Algorithm 1: EntropyBasedPrecisionAndRecall [4]

Input: Two DFAs ret and rel describing retrieved and relevant behavior,
respectively; for example, ret recognizes the language of a process model
and rel recognizes the language of an event log.

Output: A pair (prec, rec), where prec and rec are, respectively, precision and
recall for ret and rel .

1 mRet ←Minimize(ret); /* Minimize ret */

2 mRel ←Minimize(rel); /* Minimize rel */

3 intersection ← Intersection(mRet ,mRel); /* Construct intersection */

4 mIntersection ←Minimize(intersection); /* Minimize intersection */

5 scRet ← ShortCircuit(mRet); /* Short-circuit mRet */

6 scRel ← ShortCircuit(mRel); /* Short-circuit mRel */

7 scIntersection ← ShortCircuit(mIntersection); /* Short-circuit mIntersection */

8 // Compute largest eigenvalues of the adjacency matrices of automata

9 eigRet ← PerronFrobenius(scRet);
10 eigRel ← PerronFrobenius(scRel);
11 eigIntersection ← PerronFrobenius(scInersection);

12 return (eigIntersection
eigRet

, eigIntersection
eigRel

);

Algorithm 1 was originally proposed in [4].3 It can be used to compute pre-
cision and recall values between two DFAs recognizing languages that represent
relevant and retrieved process behavior. Firstly, the input DFAs are minimized
using the Minimize function (see lines 1–2). Then, the intersection DFA of
the two minimal DFAs is constructed using the Intersection function (line 3),
and the resulting DFA is, again, minimized (line 4). Next, the short-circuit ver-
sions of the three minimal DFAs are constructed using the ShortCircuit function
(lines 5–7), refer to Section 5.2. Subsequently, Perron–Frobenius (largest) eigen-
values of the adjacency matrices of the resulting ergodic DFAs are computed
using the PerronFrobenius function (lines 9–11). These eigenvalues quantify the
topological entropy values of the corresponding languages. Note that topological
entropy of a regular language is defined as the logarithm of the Perron–Frobenius
eigenvalue of the adjacency matrix of a DFA that recognizes the language [19].
As the precision and recall measures presented in [4] inherit useful properties
from the monotonicity property of the Perron–Frobenius eigenvalues, and the
logarithm is a monotonic function, either eigenvalues or their logarithms can be
used to define the precision and recall quotients. In [4], the choice was made
in favor of eigenvalues, hence the pair of precision and recall values returned
at line 12 of the algorithm; note that according to the Perron–Frobenius theo-
rem [38], the eigenvalues are always positive.

Function Minimize implements the algorithm by Hopcroft [39]; its worst-
case time complexity is O(nm log (m)), where n is the number of states and m
is the number of labels used in the automaton. Function Intersection imple-

3The corresponding algorithm in [4] takes two NFAs as input and starts by computing
their deterministic versions. In this article, we use Algorithm 1 as a sub-routine that is always
called for two deterministic input automata.

17

ments a well-known operation of intersection of regular languages in automata
theory [33]. Its time complexity is O(nm), where n and m are the numbers
of states in the intersected automata. Function ShortCircuit implements the
corresponding construction presented in Section 5.2. Finally, for the details on
the implementation of function PerronFrobenius, refer to [4].

Function TauClosure implements the construction defined in Section 6.1 and
exemplified in Fig. 4. Function Determinize implements the extended version of
the Rabin-Scott powerset construction [33]. To mitigate the performance issues,
both in terms of computation time and memory usage, that arise in practice due
to the exponential worst-case time complexity of the Rabin-Scott construction,
below, we introduce several versions of Algorithm 2.

Algorithm 2 summarizes the procedure presented in [20] for computing pre-
cision and recall that account for the partial matching of traces. The algorithm
starts by constructing the τ -closures of the input NFAs using the TauClosure
function (lines 1–2). Then, the resulting NFAs are determinized using the De-
terminize function (lines 3–4). Finally, the constructed DFAs are supplied as
input to Algorithm 1 to compute the precision and recall values.

Algorithm 3 captures the core logic of an alternative version of Algorithm 2
that aims to improve the original algorithm by incorporating the two heuristics
for constructing a DFA that recognizes the τ -closure of an event log discussed in
Section 6.3. In the alternative algorithm, function TauClosureAndDeterminize
constructs the required DFA. While it may be computationally challenging to
construct a DFA that recognizes the τ -closure of an entire event log, it may be
feasible to construct minimal DFAs that recognize the τ -closures of its parts (or
blocks). Consequently, one can fix the size of a block (number of traces in a
block), construct minimal DFAs for individual blocks, and finally merge them
into the resulting DFA. Algorithm 4 implements this idea.

Algorithm 4 starts by filtering out traces from the input log that do not
influence the result. According to Proposition 6.3, traces that are sub-traces of
some other traces in the log are irrelevant when constructing the τ -closure of
a language. These traces are removed from the log using function FilterTraces
(line 1); the function is described in Algorithm 6. Next, the algorithm splits
the input log into blocks, where the size of a block blockSize is provided as

Algorithm 2: PartialMatchingEntropyBasedPrecisionAndRecall [20]

Input: Two NFAs ret and rel describing retrieved and relevant behavior,
respectively; for example, ret recognizes the language of a process model
and rel recognizes the language of an event log.

Output: A pair (precτ , recτ), where precτ and recτ are, respectively, precision and
recall for ret and rel that account for the partial matching of traces.

1 tcRet ← TauClosure(ret); /* Construct τ-closure of ret */

2 tcRel ← TauClosure(rel); /* Construct τ-closure of rel */

3 tcdRet ← Determinize(tcRet); /* Determinize tcRet */

4 tcdRel ← Determinize(tcRel); /* Determinize tcRel */

5 return EntropyBasedPrecisionAndRecall(tcdRet , tcdRel);

18

Algorithm 3: PartialMatchingEntropyBasedPrecisionAndRecall

Input: An NFA ret and an event log rel describing retrieved and relevant behavior,
respectively, where ret recognizes the language of a process model.

Output: A pair (precτ , recτ), where precτ and recτ are, respectively, precision and
recall for ret and rel that account for the partial matching of traces.

1 tcRet ← TauClosure(ret); /* Construct τ-closure of ret */

2 tcdRet ← Determinize(tcRet); /* Determinize tcRet */

3 tcdRel ← TauClosureAndDeterminize(rel); /* Construct deluted DFA for rel */

4 return EntropyBasedPrecisionAndRecall(tcdRet , tcdRel);

input, constructs the minimal DFA for each block, and incrementally adds these
minimal DFAs (using the Union function) to the resulting automaton (lines 4–
19). Since the union of two DFAs is not necessary a DFA, each time the resulting
automaton gets updated, it is determinized and minimized; otherwise, the final
automaton may contain many nondeterministic states leading to the state space
explosion in the last phase of the algorithm. By incrementally constructing the
automaton that recognizes the τ -closure of the input event log, we reduce the
number of states, and thus the amount of required memory, to capture the
automaton.

Given two positive numbers a and b, a mod b, see line 6 in Algorithm 4, is the
remainder of the Euclidean division of a by b. Each call to the NewAutomaton
function, refer to lines 3 and 13 in Algorithm 4, returns the empty automaton,
i.e., the automaton without states and transitions. Function Union constructs
an automaton that recognizes the union of languages recognized by two input

Algorithm 4: TauClosureAndDeterminize (fixed block size)

Input: An event log L and size of a block blockSize.
Output: A DFA that recognizes the τ -closure of L, i.e., L′.

1 T ← FilterTraces(L); /* Filter out traces that do not impact result */

2 cnt ← 1; /* Initialize counter */

3 A,B ← NewAutomaton(); /* Initialize two automata */

4 while cnt ≤ ∣T ∣ do
5 B ← AddTrace(B ,T .get(cnt)); /* Add next trace to B */

6 if (cnt mod blockSize) = 0 then
7 B ← TauClosure(B); /* Construct τ-closure of B */

8 B ← Determinize(B); /* Determinize B */

9 B ←Minimize(B); /* Minimize B */

10 A← Union(A,B); /* Construct union of A and B */

11 A← Determinize(A); /* Determinize A */

12 A←Minimize(A); /* Minimize A */

13 B ← NewAutomaton(); /* Re-initialize automaton B */

14 end
15 cnt ← cnt + 1; /* Increment counter */

16 end
17 A← Union(A,B); /* Construct union of A and B */

18 A← Determinize(A); /* Determinize A */

19 A←Minimize(A); /* Minimize A */

20 return A;

19

Algorithm 5: TauClosureAndDeterminize (decreasing block size)

Input: An event log L, size of a minimal block minBlockSize, and rate at which the
block size is decreased rate, such that rate ≥ 2.

Output: A DFA that recognizes the τ -closure of L, i.e., L′.

1 T ← FilterTraces(L); /* Filter out traces that do not impact result */

2 cnt ← 1; /* Initialize counter */

3 blockSize ← ∣T ∣ / rate; /* Initialize size of a block */

4 A,B ← NewAutomaton(); /* Initialize two automata */

5 while cnt ≤ ∣T ∣ do
6 B ← AddTrace(B ,T.get(cnt)); /* Add next trace to B */

7 if (cnt mod blockSize) = 0 then
8 B ← TauClosure(B); /* Construct τ-closure of B */

9 B ← Determinize(B); /* Determinize B */

10 B ←Minimize(B); /* Minimize B */

11 A← Union(A,B); /* Construct union of A and B */

12 A← Determinize(A); /* Determinize A */

13 A←Minimize(A); /* Minimize A */

14 B ← NewAutomaton(); /* Re-initialize automaton B */

15 if (blockSize > minBlockSize) then
16 blockSize ← blockSize / rate; /* Reduce size of a block */

17 end

18 end
19 cnt ← cnt + 1; /* Increment counter */

20 end
21 A← Union(A,B); /* Construct union of A and B */

22 A← Determinize(A); /* Determinize A */

23 A←Minimize(A); /* Minimize A */

24 return A;

automata, which is trivially achieved by “joining” the start states of the input
automata. A call to function AddTrace at line 6 of Algorithm 4 constructs an
automaton that recognizes language lang(B) ∪ {T.get(cnt)}, where T.get(cnt)
is a trace at position cnt in T (lexicographical order on traces is used).

Algorithm 5 modifies Algorithm 4 to work with blocks of different sizes.
Indeed, it gets computationally more demanding to process every next block at
lines 7–13 of Algorithm 4 because of the operations on automaton A at lines
10–12. Hence, in Algorithm 5, we start by processing a large block and then
progressively decrease the size of every next processed block until the minimal
specified block size is reached. For instance, if the input variable rate is set to
2, then the first processed block contains half of the traces from the input event
log. The second block is twice smaller than the first one. Etc. This strategy
exploits the assumption that the number of states in automaton A grows fast
as more traces of the log get processed.

Algorithm 6 defines function FilterTraces. Function GetLongestTrace is
used to obtain a longest trace from yet unprocessed traces (line 3). Then, the
current longest unprocessed trace curTrace is checked to be a sub-trace of some
trace in T – a set of traces that are not sub-traces of any so far processed trace
and of length at least of the length of curTrace (lines 5–11). If curTrace is not
a sub-trace of any trace in T , then it is added to T (line 12). Once all the traces

20

Algorithm 6: FilterTraces

Input: An event log L.
Output: The filtered version of L.

1 T ← ∅; /* Initialize result */

2 while ∣L∣ > 0 do
3 curTrace ← GetLongestTrace(L); /* Find a longest trace in L */

4 L← L ∖ {curTrace}; /* Remove curTrace from L */

5 isSubtrace ← false; /* Initialize control variable */

6 foreach trace ∈ T do
7 if IsSubtrace(curTrace, trace) then
8 isSubtrace ← true;
9 break;

10 end

11 end
12 if isSubtrace = false then T ← T ∪ {curTrace};

13 end
14 return T ;

in the input log are processed, set T is the filtered version of L (line 14). A
call to function IsSubtrace at line 8 of Algorithm 6 checks if trace curTrace is
a sub-trace of trace trace. It is implemented through sequential scans through
both traces keeping track of matching events and runs in O(n +m) worst-case
time where n and m are the lengths of the two traces.

8. Experimental Results

In this section, we evaluate our implementation of the eigenvalue-based pre-
cision and recall measures presented in Section 7 using synthetic and real-world
datasets. All the experiments can be reproduced using our publicly available
implementation4 and the command line tool [37].

8.1. Synthetic Dataset

In this section, we experiment with a synthetic event log and a set of corre-
sponding process models described in [21, 23]. The log is defined as follows:

L = {⟨A,B,D,E, I⟩ , ⟨A,C,D,G,H,F, I⟩ , ⟨A,C,G,D,H,F, I⟩ ,

⟨A,C,H,D,F, I⟩ , ⟨A,C,D,H,F, I⟩} .

The set of process models consists of ten Petri nets shown in Fig. 7.
The reachability graphs of all these ten Petri nets can be encoded as DFAs.

Table 3 shows precision and recall values between languages recognized by these
DFAs and L. All these values were computed in close to real-time (in millisec-
onds) using a computer with Intel Core i3-3110M CPU @2.40 GHz and 4 GB
RAM.

4https://github.com/akalenkova/eigen-measure

21

https://github.com/akalenkova/eigen-measure

A

B

C

D

E

F

I

G H

Ʈ

(a) Original model

A B D E I

(b) Single trace model

A C G D H

A

A

A

A

B D E I

C D G H

C H D F

C D H F

F I

F I

I

I

(c) Separate traces model

Ʈ

A
B C

E

D

H
I

F G

Ʈ

(d) Flower model

A

B

C

D

E

F

I

G H

(f) G and H in loops model

A

B

C

D

E

F

I

G

H

Ʈ

Ʈ

(e) G and H in parallel model

A

B

C

E

F

I

G H

Ʈ

D

(g) D in a loop model

A

Ʈ

B

C

D

E

F

G

H

I

Ʈ

(h) All parallel model

A B C D E F G H I

(i) Round robin model

Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ

Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ

A B C D E F G H I

(j) Round robin model (alternative)

Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ

Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ

Ʈ

Figure 7: Synthetic process models from [21, 23].

The values in the left-most recall column in Table 3 measure the share of
traces from the log that are also the traces of the model. Six models can “replay”
all the log traces, hence the recall values of one. The Single trace model accepts
only one trace from the log, which leads to the recall value of less than one. The
All parallel model, which imposes a restriction that all the labels must appear
exactly once in a trace, and the two versions of the Round robin model (shown
in Fig. 7(i) and Fig. 7(j) and introduced in [21] and [23], respectively)5, which
execute all the activities in a particular order without skipping them, do not
accept a single trace from the log. Therefore, the corresponding recall values
equal to zero. The τ -closures of the behaviors described by the All parallel
and the two versions of the Round robin model contain traces supporting any
order of events and any number of event skips. Additionally, in the Round robin
models, events can be repeated any number of times. Hence, All parallel and

5The difference between the two versions of the Round robin model is in the length of
traces that they accept. However, since both models give the same precision and recall values
for all the evaluated measures, they are presented in a single row in Table 3 and Table 4.

22

Table 3: Precision and recall values for synthetic log and models.

Model prec recall precτ recallτ

Original 0.979 1.000 0.998 1.000
Single trace 1.000 0.798 1.000 0.732

Separate traces 1.000 1.000 1.000 1.000
Flower 0.125 1.000 0.479 1.000

G and H in parallel 0.889 1.000 0.986 1.000
G and H in loops 0.568 1.000 0.933 1.000

D in a loop 0.758 1.000 0.970 1.000
All parallel 0.000 0.000 0.656 1.000
Round robin 0.000 0.000 0.479 1.000

the two versions of the Round robin model accept any trace from the τ -closure
of L, see the corresponding recall values of one in Table 3. This example shows
that the τ -closure operation can significantly extend the initial behavior. In
such cases, it might be feasible to consider both measures when comparing the
log and model.

Table 4: Rankings of the synthetic models based on precision values for the synthetic log: 1
– worst precision, 9 – best precision.

Model SD ETCa NE PCC AA MAP1 MAP2-7 EB EBτ

Original 7 7 9 8 7 7 7 7 7
Single trace 8 8 6 8 8 7 8 8 8

Separate traces 8 8 8 7 8 7 8 8 8
Flower 1 1 1 1 1 1 1 3 1

G and H in parallel 6 3 7 6 6 5 6 6 6
G and H in loops 1 5 5 4 5 3 3 4 4

D in a loop 1 6 4 5 4 5 4 5 5
All parallel 1 2 2 2 3 2 2 1 3
Round robin 1 4 3 3 1 4 5 1 1

Table 4 shows ranks of the synthetic models with respect to the synthetic
log derived based on the state-of-the-art precision measures; 9 stands for the
best precision score, while 1 stands for the worst precision score. The last two
columns in the table show rankings derived based on our techniques. Column
EB stands for the entropy-based approach from Section 5, while EBτ for its
extension from Section 6. The other rankings for the same models and log were
computed in [23, 21]. Concretely, these precision measures were considered (re-
fer to columns 2–8 in the table): Set Difference (SD) [25], Alignment-based
ETC precision (ETCa) [30], Negative Events (NE) [26, 40], Projected Con-
formance Checking (PCC) [22], Anti-Alignment precision (AA) [23, 41], and
k-order Markovian Abstraction Precisions (MAPk), k ∈ [1 ..7] [21]. Greater val-
ues of k for the latter technique correspond to less abstraction in the encodings
of models and logs and, thus, more “precise” measurements.

According to [4], the exact EB precision is the only precision measure that
was formally shown to possess the property of the strict monotonicity, i.e., the
more common traces a log and model have, the greater the measured values
are. The partial EBτ measures presented in Section 6 inherit all the properties
of the EB measures with the only exception for strict monotonicity under the
conditions stated in Theorem 6.2. The non-strict monotonicity holds for the

23

EBτ precision immediately based on the result of Theorem 6.1. Note that all
these properties of the EB and EBτ measures hold for behaviors that describe
arbitrary, possibly infinite, collections of traces.

The partial matching EBτ precision ranks the models in the same way as
the EB precision except for the All parallel model and the Flower model. Since
the All parallel model does not accept traces of the log, the corresponding EB
precision rank is the worst (along with the Round robin models). However,
according to the EBτ precision, the Flower model has the worst rank because
the All parallel model after “dilution” accepts all the traces from the “diluted”
event log and the share of its behavior not present in the log is less than the
share of the Flower model behavior not present in the log.

The closest ranking to that one produced by the EBτ precision is the rank-
ing by the Anti-Alignment precision (AA). The difference is in the rankings of
models G and H in loops and D in a loop. These two models describe all the traces
from the synthetic log. However, the behavior described in the G and H in loops
model has more variability. Indeed, for a fixed length, the G and H in loops model
describes more traces of that length than the D in a loop model. This is due to
the high number of possible interleavings of G and H in the G and H in loops
model. The monotonicity of the approach reported in [23, 41] is based on finite
concepts, such as maximal length of the log trace, while we propose a general
approach capable of assessing infinite behaviors described in models.

Some precision measurements and ranks are less intuitive. For instance,
ETCa, MAP1, and MAP2-7 techniques rank the Round robin models among the
G and H in loops, D in a loop, and the G and H in parallel models. Note, however,
that these models are similar to the original process while the Round robin
models accept many traces not present in the log. The NE and PCC measures
distinguish the Single trace model and the Separate traces model, while in terms
of precision, these models should be the same because they do not accept traces
that are not in the log. Finally, the SD measure gives the same score to five
different models.

Although the partially matching conformance measures, under some rea-
sonable conditions, ensure the monotonicity of the measurements, they may
yield computationally expensive. In the next subsection, we apply our partial
matching techniques to real-world data and analyze the scalability of different
modifications of the original partial matching algorithm proposed in [20].

8.2. Real-World Event Data

Next, we investigate the scalability of our approach to verify whether it
can be applied to real-world event logs. In our experiments, we used Intel
Xeon Gold 6154 CPU @3.00 GHz with 128 GB RAM. We have applied the
proposed conformance checking approach and its extensions to Business Process
Intelligence Challenge (BPIC) event logs [42, 43, 44], which are publicly available
logs6 of real-world IT-systems, and an event log of a booking flight system

6BPIC logs: https://data.4tu.nl/repository/collection:event_logs_real.

24

https://data.4tu.nl/repository/collection:event_logs_real

Table 5: Characteristics of the real-world event logs.

Event log Name # Traces # Sub-traces # Ev. Classes # Events

1 BPIC’12 2,320 1,998 18 164,144

2 BPIC’13 closed 111 105 3 5,179

3 BPIC’13 open 45 44 3 1,403

4 BPIC’13 incid. 832 805 4 44,607

5 BFS’13 1,315 1,003 12 30,393

6 BPIC’15 1 709 60 64 25,823

7 BPIC’15 2 449 16 85 20,420

8 BPIC’15 3 756 66 56 28,482

9 BPIC’15 4 580 20 61 21,848

(BFS). Prior to the analysis, we filtered out infrequent events that appear less
than in 80% of traces using Filter Log using Simple Heuristics Process Mining
Framework (ProM) [45] plugin. Analysis of filtered event logs allows finding
deviations in sequences of the most frequent event executions discarding less
frequent noise events. All the filtered logs used in the evaluation are available for
download together with our implementation of the measures. Characteristics of
the analyzed event logs, such as the total number of traces (# Traces), number
of traces that are sub-traces of some other traces of the log (# Sub-traces),
number of event classes, i.e., unique event labels, (# Ev. Classes), and the
overall number of events (# Events), are summarized in Table 5.

From each event log, a Petri net was discovered using the Inductive miner [17].
This discovery technique constructs bounded Petri nets, such that their reacha-
bility graphs can be encoded as DFAs. We used these DFAs as representations
of model behaviors to compute the measures presented in this article. Firstly,
we calculated all the precision and recall values using the exact matching ap-
proach [4]. The results are shown in Table 6. For each event log, we ran experi-
ments five times and calculated average execution times and the corresponding
95% confidence intervals. To speed up calculations, we verified whether the
model can replay all the traces from the log (this can be checked efficiently). If
so, we accepted that the intersection of languages is encoded by the same DFA
as the event log. Consequently, the time to build the automaton and the time
to calculate the entropy for the intersection of languages was accepted to be
zero. As can be seen in Table 6, analyzed event logs are modeled by DFAs with
not more than several thousands of states, and precision and recall values can
be obtained in less than a minute. In contrast to determinization, the entropy
calculation times do not depend trivially on the sizes of automata. This can be
explained by the fact that the calculation of the eigenvalues of a matrix depends
not only on the size of the matrix but also on its content [4].

Next, we calculated the precision and recall values using the new partial
matching approach. When using the partial matching approach, NFAs with
silent transitions should be converted to equivalent DFAs. As this operation is
known to be computationally expensive (especially for large NFAs constructed

25

Table 6: Exact matching approach (time for DFAs construction and entropy calculation in
milliseconds).

Event Automa- # States / Construct. Entropy Total Preci-

log ton # Transitions time calc. time sion /

time Recall

L 9,102 / 10,642 2,861±334 787±104 3,649±391

1 M ∩L 9,102 / 10,642 0 0 0 0.147 /

M 4 / 22 5±2 27±3 32±3 1.000

L 156 / 243 15±2 193±5 208±6

2 M ∩L 16 / 19 30±5 82±29 111±31 0.918 /

M 3 / 4 6±2 15±2 21±2 0.797

L 33 / 43 3±1 514±95 517±95

3 M ∩L 33 / 43 0 0 0 0.903 /

M 3 / 4 6±2 16±0 21±2 1.000

L 2,032 / 2,760 127±5 553±7 680±6

4 M ∩L 6 / 5 125±32 0±0 125±32 0.575 /

M 5 / 9 7±1 1±2 8±2 0.824

L 2,830 / 4,063 355±100 36,033±591 36,388±661

5 M ∩L 293 / 631 126±18 4±1 130±18 0.498 /

M 514 / 3,329 36,049±7,124 363±268 36,412±7,166 0.948

L 10,784 / 11,456 2,013±177 380±9 2,393±176

6 M ∩L 10,784 / 11,456 0 0 0 0.025 /

M 13 / 541 72±4 1±2 73±3 1.000

L 12,316 / 12,752 2,723±157 573±22 3,295±154

7 M ∩L 6,482 / 6,685 1,266±162 305±3 1,571±162 0.016 /

M 15 / 552 55±3 1,041±414 1,096±416 0.991

L 9,590 / 10,297 3,674±778 408±4 4,082±780

8 M ∩L 8,140 / 8,751 948±64 134±11 1,082±55 0.030 /

M 29 / 1,105 62±6 3±2 66±6 1.000

L 9,187 / 9,753 2,936±218 6,988±107 9,950±238

9 M ∩L 7,981 / 8,478 1,272±98 5,175±2,619 1,276±99 0.027 /

M 57 / 2,353 141±7 3±2 144±8 0.999

from real-world event logs), in this article we propose improvements that allow
us, where possible, controlling the space used in computations (Section 6.3),
making this operation applicable for a wider set of logs.

Table 7 compares time (in milliseconds) and memory (in GB) used by the
original approach [20] (Algorithm 2), refer to column 3, Algorithm 3 instantiated
with the fixed block size TauClosureAndDeterminize function (Algorithm 4),
refer to columns 4–6, and Algorithm 3 instantiated with the decreasing block
size TauClosureAndDeterminize function (Algorithm 5), see column 7 in the
table. These experiments were performed only once to compare and select
determinization techniques for the further analysis. As reported in the table,
DFAs representing τ -closures of large event logs may have millions of states.
For the fixed block size algorithm, the size of a block was set to 1, 10, and 100.
For the decreasing block size algorithm, the minBlockSize and rate parameters

26

Table 7: Time and maximal RAM used for the determinization of NFAs (in milliseconds and
GB, respectively).

NFA / Time / Memory

Log DFA Original Fixed block size Decreasing

States 1 10 100 block size

1 9,102 / 97,270 / 743,444 / 109,583 / 45,980 / 93,885 /

90,557 7.1 2.1 2.1 4.1 2.5

2 156 / 216 29 / 1 232 / 1 134 / 1 77 / 1 105 / 1

3 33 / 17 5 / 1 51 / 1 33 / 1 33 / 1 62 / 1

4 2,032 / 1,464,409 / 11,303 / 18,008 / 112,681 / 14,591 /

24,336 88 1 4.1 11 3.5

5 2,830 / 13,008 / 168,995 / 21,941 / 8,254 / 21,083 /

22,359 3.1 1 1 1.5 2.8

6 10,784 / – 284,904,733 / 31,101,090 / 8,661,413 / –

4,068,472 90 90 90

7 12,316 / – – – – – –

8 9,590 / 1,352,873 / 105,000,038 / 12,309,253 / 2,918,489 / 10,015,028 /

1,665,113 71 55 65 65 65

9 9,187 / – 162,898,238 / 19,003,571 / 5,911,793 / 24,869,735 /

4,343,979 90 90 100 115

were set to 10 and 3, respectively; setting the rate parameter to 2 made this
approach similar to the original one in terms of space.

The results of experiments (Table 7) show that the algorithms proposed
in this article allow reducing the memory used for constructing the DFAs that
recognize the τ -closures of event logs. Moreover, in some cases (for logs 6
and 9), new techniques managed to construct diluted DFAs, while the original
technique faced memory limitations. These experiments also demonstrate that
the size of a block influences the memory size, i.e., the smaller the block size the
less memory is required to perform computations. Unfortunately, for some large
event logs (such as log 7), neither the original nor the new techniques produced
a result (such cases are represented by dashes). Besides controlling the memory
used for computations, the new techniques can reduce the computation time.
For instance, log 4 can be efficiently processed if split into blocks. After the
filtering, log 4 contains only 32 traces and in this case the optimal block size is
not 100 (as for larger event logs, such as log 1, log 5, log 6, and log 9), but 1,
i.e., the optimal block size is proportional to the overall size of the event log.
For small event logs, such as logs 2 and 3, and sometimes for large logs, such as
log 8, the overhead of manipulating intermediate NFAs exceeds the total time
required to build the desired DFAs. This is explained by the fact that for DFAs

27

that encode these logs the number of intermediate states merged during the
minimization is small. Note that the number of states in the DFA modeling the
τ -closure of log 3 is less than the number of states in the corresponding NFA
because, after the filtering of sub-traces, the “diluted” version of log 3 contains
only one trace, and hence, the resulting DFA has less states.

Table 8 summarizes the overall times of computing the precision and re-
call values using the partial matching approach. Again, the experiments were
executed five times for each event log, and average execution times with 95%
confidence intervals were calculated. For each event log, the best approach to
build the “diluted” DFA (based on the results in Table 7) was applied. Similarly
to the exact matching approach, the intersection of the model and log languages
was computed only if the model could not replay the log. Note also that, similar
to the exact matching approach, the entropy calculation time does not depend
on the size of the model.

To conclude, none of the new methods demonstrated better runtime than
the original approach consistently. For real-world logs of characteristics similar
to those used in our evaluation, we recommend using Algorithm 4 with the fixed
block of size 100, as it consistently uses less memory and is often faster. This
method is implemented in our command line tools.

9. Conclusion

Entropy-based precision and recall conformance measures [4] quantify the
similarity between traces described in a designed process model and its corre-
sponding executed traces recorded in an event log. While precision quantifies
how well the traces of the model are represented in the log, recall measures
how well the traces in the log are represented in the model. In [20], we ex-
tended these conformance measures by addressing the phenomenon of partially
matching traces, i.e., non-identical traces that nevertheless describe the same
sub-sequences of process steps. The proposed extension based on the addition of
silent (skipping) steps to the model and log traces has proven effective but also
demonstrated a significant negative impact on the efficiency of the measures.
In this article, we address this problem and introduce algorithms that aim to
reduce the memory required to compute the measures. Additionally, these al-
gorithms were supplemented by a technique for filtering out traces that can be
obtained from other traces of the log by skipping some of the event occurrences.
We prove that this filtering does not influence the final result. All the presented
algorithms were implemented and tested on synthetic and real-world datasets.
The experiments confirmed that our new techniques require less memory and
often run faster.

We identify several directions for future work. The proposed measures do
not support systems that cannot be described as DFAs, e.g., infinite-state sys-
tems. To address this limitation, coverability graphs may yield useful. Another
limitation is that the proposed approach considers distinct traces only and can
be extended to take into account frequencies of traces in event logs. We also

28

Table 8: Partial matching approach (minimal time for NFAs determinization and entropy
calculation in milliseconds).

Event Auto- # States / Deter- Entropy Total Preci-

log maton # Transitions min. calc. time sion /

time time Recall

L′ 90,557 / 446,847 46,150±1,762 11,033±701 57,183±2,188

1 M ′
∩L′ 90,557 / 446,847 0 0 0 0.709 /

M ′ 3 / 33 2±2 18±3 19±3 1.000

L′ 216 / 269 29±3 258±17 287±19

2 M ′
∩L′ 216 / 269 0 0 0 0.961 /

M ′ 1 / 3 0±0 14±2 14±2 1.000

L′ 17 / 31 5±3 174±3 179±4

3 M ′
∩L′ 17 / 31 0 0 0 0.980 /

M ′ 1 / 2 2±2 15±1 17±4 1.000

L′ 24,336 / 72,994 11,222±235 2,074±32 13,297±252

4 M ′
∩L′ 24,336 / 72,994 0 0 0 0.995 /

M ′ 1 / 3 1±2 15±2 15±3 1.000

L′ 22,359 / 200,254 8,348±354 3,936±1,523 12,284±1,403

5 M ′
∩L′ 7,542 / 45,163 1,343±91 2,407±1,035 3,750±1,025 0.940 /

M ′ 514 / 3,340 225±4 26±15 250±16 0.895

L′ 4,068,472 / 8,496,809± 9,332,802± 17,818,611±

66,501,653 246,746 2,692,693 2,642,806

6 M ′
∩L′ 4,068,472 / 0 0 0 0.374 /

66,501,653 1.000

M ′ 5 / 312 4±3 4±6 8±7

L′ – – – –

7 M ′
∩L′ – – – – –

M ′ 3 / 252 1±2 16±2 17±2

L′ 1,665,113 / 1,356,059± 1,699,562± 3,055,621±

24,396,479 15,340 533,044 538,234

8 M ′
∩L′ 1,665,113 / 0 0 0 0.393 /

24,396,479 1.000

M ′ 5 / 272 2±3 1±2 4±5

L′ 4,343,979 / 6,078,928± 8,451,036± 14,529,964±

64,701,275 191,831 2,114,810 2,154,036

9 M ′
∩L′ 4,343,979 / 0 0 0 0.376 /

64,701,275 1.000

M ′ 5 / 297 11±5 2±2 13±7

plan to extend the techniques by providing qualitative information on differ-
ences between designed and observed processes, including the identification and
visualization of deviations. Finally, we plan to explore further partial and total
orders over the set of regular languages to identify other interesting properties
for conformance checking measures and study whether the entropy-based mea-
sures possess them. At this stage, we recommend using the partial matching
conformance measures in offline settings, e.g., when designing new and evaluat-
ing existing process discovery algorithms. This limitation can be overcome by

29

distributing the calculations over multiple computers, which will be explored in
future work.

Acknowledgment

This work was in part supported by the Australian Research Council Dis-
covery Project DP180102839. We want to thank Wolfgang Reisig for his input
in the design of the presented optimized version of our algorithm for computing
the entropy-based precision and recall that accounts for the partial matching of
the compared traces.

References

[1] W. van der Aalst, Process Mining: Data Science in Action, 2016. doi:

10.1007/978-3-662-49851-4.

[2] W. van der Aalst, A. Adriansyah, B. van Dongen, Replaying history on
process models for conformance checking and performance analysis, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2 (2)
(2012) 182–192. doi:10.1002/widm.1045.

[3] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance
Checking—Relating Processes and Models, Springer, 2018. doi:10.1007/
978-3-319-99414-7.

[4] A. Polyvyanyy, A. Solti, M. Weidlich, C. D. Ciccio, J. Mendling, Monotone
precision and recall measures for comparing executions and specifications
of dynamic systems, ACM Trans. Softw. Eng. Methodol. 29 (3). doi:

10.1145/3387909.

[5] S. J. J. Leemans, A. F. Syring, W. M. P. van der Aalst, Earth movers’
stochastic conformance checking, in: Business Process Management Forum,
Vol. 360 of Lecture Notes in Business Information Processing, Springer,
2019, pp. 127–143. doi:10.1007/978-3-030-26643-1_8.

[6] A. F. Syring, N. Tax, W. M. P. van der Aalst, Evaluating Conformance
Measures in Process Mining Using Conformance Propositions, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2019, pp. 192–221.

[7] D. Fahland, W. M. P. van der Aalst, Model repair — aligning process
models to reality, Information Systems 47 (2015) 220–243. doi:10.1016/

j.is.2013.12.007.

[8] A. Polyvyanyy, W. van der Aalst, A. ter Hofstede, M. Wynn, Impact-
driven process model repair, ACM Transactions on Software Engineering
and Methodology 25 (4) (2017) 1–60. doi:10.1145/2980764.

30

http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1002/widm.1045
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1145/3387909
http://dx.doi.org/10.1145/3387909
http://dx.doi.org/10.1007/978-3-030-26643-1_8
http://dx.doi.org/10.1016/j.is.2013.12.007
http://dx.doi.org/10.1016/j.is.2013.12.007
http://dx.doi.org/10.1145/2980764

[9] M. Weidlich, A. Polyvyanyy, N. Desai, J. Mendling, M. Weske, Process
compliance analysis based on behavioural profiles, Information Systems
36 (7) (2011) 1009–1025. doi:10.1016/j.is.2011.04.002.

[10] J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst, Quality
dimensions in process discovery: The importance of fitness, precision, gen-
eralization and simplicity, International Journal of Cooperative Information
Systems 23 (1). doi:10.1142/S0218843014400012.

[11] W. Frakes, R. Baeza-Yates, Information Retrieval: Data Structures and
Algorithms, Prentice-Hall, Inc., NJ, USA, 1992.

[12] A. J. M. M. Weijters, W. M. P. van der Aalst, Rediscovering workflow
models from event-based data using little thumb, Integrated Computer-
Aided Engineering 10 (2) (2003) 151–162.

[13] W. M. P. van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discov-
ering process models from event logs, IEEE Transactions on Knowledge and
Data Engineering 16 (9) (2004) 1128–1142. doi:10.1109/TKDE.2004.47.

[14] C. W. Günther, W. M. P. van der Aalst, Fuzzy mining - adaptive pro-
cess simplification based on multi-perspective metrics, in: Business Pro-
cess Management, 5th International Conference, BPM 2007, Brisbane,
Australia, September 24-28, 2007, Proceedings, 2007, pp. 328–343. doi:

10.1007/978-3-540-75183-0_24.

[15] A. K. A. de Medeiros, A. J. M. M. Weijters, W. M. P. van der Aalst, Genetic
process mining: An experimental evaluation, Data Mining and Knowledge
Discovery 14 (2) (2007) 245–304. doi:10.1007/s10618-006-0061-7.

[16] J. Carmona, J. Cortadella, Process mining meets abstract interpretation,
in: Machine Learning and Knowledge Discovery in Databases, European
Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010,
Proceedings, Part I, Vol. 6321 of Lecture Notes in Computer Science,
Springer, 2010, pp. 184–199. doi:10.1007/978-3-642-15880-3_18.

[17] S. Leemans, D. Fahland, W. van der Aalst, Discovering Block-Structured
Process Models from Incomplete Event Logs, in: ATPN’2014, Vol. 8489 of
LNCS, Springer, 2014, pp. 91–110.

[18] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, A. Polyvyanyy, Split
miner: automated discovery of accurate and simple business process models
from event logs, KAIS (2018) 1–34doi:10.1007/s10115-018-1214-x.

[19] T. Ceccherini-Silberstein, A. Mach̀ı, F. Scarabotti, On the entropy of reg-
ular languages, Theor. Comp. Sci. 307 (2003) 93–102.

[20] A. Polyvyanyy, A. A. Kalenkova, Monotone conformance checking for par-
tially matching designed and observed processes, in: International Confer-
ence on Process Mining, ICPM 2019, Aachen, Germany, June 24–26, 2019,
IEEE, 2019, pp. 81–88. doi:10.1109/ICPM.2019.00022.

31

http://dx.doi.org/10.1016/j.is.2011.04.002
http://dx.doi.org/10.1142/S0218843014400012
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/s10618-006-0061-7
http://dx.doi.org/10.1007/978-3-642-15880-3_18
http://dx.doi.org/10.1007/s10115-018-1214-x
http://dx.doi.org/10.1109/ICPM.2019.00022

[21] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La Rosa,
D. Reissner, Abstract-and-compare: A family of scalable precision mea-
sures for automated process discovery, in: Business Process Management,
Springer International Publishing, Cham, 2018, pp. 158–175.

[22] S. Leemans, D. Fahland, W. van der Aalst, Scalable process discovery and
conformance checking, Software & Systems Modeling 17 (2) (2018) 599–
631.

[23] B. van Dongen, J. Carmona, T. Chatain, A unified approach for measuring
precision and generalization based on anti-alignments, in: Business Process
Management, Springer, Cham, 2016, pp. 39–56.

[24] J. Muñoz-Gama, J. Carmona, A fresh look at precision in process con-
formance, in: Business Process Management, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010, pp. 211–226.

[25] G. Greco, A. Guzzo, L. Pontieri, D. Sacca, Discovering expressive process
models by clustering log traces, IEEE Trans. on Knowl. and Data Eng.
18 (8) (2006) 1010–1027.

[26] J. De Weerdt, M. De Backer, J. Vanthienen, B. Baesens, A robust f-measure
for evaluating discovered process models, in: CIDM, IEEE, 2011, pp. 148–
155.

[27] A. Kalenkova, A. Polyvyanyy, A spectrum of entropy-based precision and
recall measurements between partially matching designed and observed pro-
cesses, in: Service-Oriented Computing, Springer International Publishing,
Cham, 2020, pp. 337–354.

[28] A. Polyvyanyy, A. Moffat, L. Garćıa-Bañuelos, An entropic relevance mea-
sure for stochastic conformance checking in process mining, in: 2nd Inter-
national Conference on Process Mining (ICPM), IEEE, 2020.

[29] S. Leemans, A. Polyvyanyy, Stochastic-aware conformance checking: An
entropy-based approach, in: S. Dustdar, E. Yu, C. Salinesi, D. Rieu,
V. Pant (Eds.), Advanced Information Systems Engineering, Springer In-
ternational Publishing, Cham, 2020, pp. 217–233.

[30] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, W. van der
Aalst, Measuring precision of modeled behavior, Inf. Syst. and e-Business
Management 13 (1) (2015) 37–67.

[31] A. Rozinat, W. van der Aalst, Conformance checking of processes based
on monitoring real behavior, Information Systems 33 (1) (2008) 64 – 95.
doi:10.1016/j.is.2007.07.001.

[32] N. Tax, X. Lu, N. Sidorova, D. Fahland, W. van der Aalst, The imprecisions
of precision measures in process mining, Information Processing Letters 135
(2018) 1 – 8. doi:10.1016/j.ipl.2018.01.013.

32

http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.1016/j.ipl.2018.01.013

[33] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata The-
ory, Languages, and Computation, 3rd Edition, Pearson International Edi-
tion, Addison-Wesley, 2007.

[34] S. Leemans, D. Fahland, W. van der Aalst, Discovering block-structured
process models from event logs - A constructive approach, in: ATPN’2013
Conference, Vol. 7927 of LNCS, 2013, pp. 311–329.

[35] J. E. Hopcroft, J. D. Ullman, An n log n algorithm for detecting reducible
graphs, in: Proe. 6th Annual Princeton Conf. on Inf. Sciences and Systems,
1972, pp. 119–122.

[36] A. Polyvyanyy, M. Weidlich, Towards a compendium of process
technologies—the jBPT library for process model analysis, in: CAiSE Fo-
rum, Vol. 998 of CEUR Workshop Proceedings, CEUR-WS, 2013, pp. 1–8.
URL http://ceur-ws.org/Vol-998/Paper14.pdf

[37] A. Polyvyanyy, H. Alkhammash, C. Di Ciccio, L. Garćıa-Bañuelos,
A. Kalenkova, S. Leemans, J. Mendling, A. Moffat, M. Weidlich, Entropia:
A family of entropy-based conformance checking measures for process min-
ing, in: 2nd International Conference on Process Mining (ICPM). Demo
Track., CEUR-WS, 2020.

[38] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
doi:10.1137/1.9780898719512.

[39] J. E. Hopcroft, An n log n algorithm for minimizing states in a finite
automaton, Tech. rep., Stanford (1971).

[40] S. vanden Broucke, J. De Weerdt, J. Vanthienen, B. Baesens, Determining
process model precision and generalization with weighted artificial negative
events, IEEE Transactions on Knowledge and Data Engineering 26 (8)
(2014) 1877–1889.

[41] T. Chatain, J. Carmona, Anti-alignments in conformance checking – the
dark side of process models, in: ATPN’2016, pp. 240–258.

[42] B. van Dongen, Bpi challenge 2012 (2012). doi:10.4121/UUID:

3926DB30-F712-4394-AEBC-75976070E91F.

[43] W. Steeman, Bpi challenge 2013 (2013). doi:10.4121/UUID:

A7CE5C55-03A7-4583-B855-98B86E1A2B07.

[44] B. van Dongen, Bpi challenge 2015 (2015). doi:10.4121/UUID:

31A308EF-C844-48DA-948C-305D167A0EC1.

[45] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, W. van der
Aalst, The ProM Framework: A new era in process mining tool support,
in: ATPN’2005, pp. 444–454.

33

http://ceur-ws.org/Vol-998/Paper14.pdf
http://ceur-ws.org/Vol-998/Paper14.pdf
http://ceur-ws.org/Vol-998/Paper14.pdf
http://dx.doi.org/10.1137/1.9780898719512
http://dx.doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
http://dx.doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
http://dx.doi.org/10.4121/UUID:A7CE5C55-03A7-4583-B855-98B86E1A2B07
http://dx.doi.org/10.4121/UUID:A7CE5C55-03A7-4583-B855-98B86E1A2B07
http://dx.doi.org/10.4121/UUID:31A308EF-C844-48DA-948C-305D167A0EC1
http://dx.doi.org/10.4121/UUID:31A308EF-C844-48DA-948C-305D167A0EC1

	Introduction
	Related Work
	Motivating Example
	Preliminaries
	Sequences, Languages, and Event Logs
	Finite Automata

	Entropy-Based Conformance Checking: Exact Matching
	Topological Entropy
	Short-Circuit Entropy
	Precision and Recall

	Entropy-Based Conformance Checking: Partial Matching
	Entropy and -Closure of Regular Languages
	Precision and Recall
	Automata That Recognize -Closures of Event Logs

	Algorithms
	Experimental Results
	Synthetic Dataset
	Real-World Event Data

	Conclusion

